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Einstein's requirement of a unified geometrical description of gravitational fields 
and their matter sources is shown to become possible (at least for certain matter 
sources) by relaxing his other requirement of a minimal interaction of gravita- 
tion with matter. Arguments are presented to demonstrate that Schrrdinger's 
discovery of pair creation by gravitational fields and the associated effects of 
virtual pairs make the relaxation of the latter requirement inevitable in order to 
obtain a complete macroscopic description (which needs no separate insertion 
to take account of averaged quantum effects). The gravitational field equations 
in case of a nonminimal interaction need higher derivatives of the metric than 
the second. The author's gauge theory on the manifold of the anti-de Sitter 
group S0(3, 2) with the subgroup S0(3, 1) (proper Lorentz group) as gauge 
group and the factor space of the two group manifolds as space-time manifold 
gives rise to a Yang-Mills field which can be interpreted to be composed of 
Riemannian curvature and a tensor formed out of torsion. Einstein's equations 
with a cosmological member are satisfied by the Cartan-Killing metric on the 
group manifold so that the generalization to a Kaluza-Klein theory results in 
a minimal disturbance of the group symmetry. The separation of the Yang-  
Mills field results in a part of its energy-momentum tensor becoming purely 
Riemannian; this part may be interpreted to be due to the contribution of 
virtual matter, whereas the part with torsion is due to real matter and its 
interaction with curvature. The Yang-Mitls field equations have a third-order 
derivative purely metric part, which is equivalent to the field equations sug- 
gested by Yang (in the latter, however, torsion should be inseparably present 
and has been ignored). The torsion part is the "matter source" of this term and 
it is tempting to relate it to elementary particle spin. The theory can be regarded 
as a gauge theory of space-time geometry. It needs generalizations to geometrize 
matter with an energy-momentum tensor of nonvanishing trace. The equations, 
however, already considerably modify the problem of gravitational collapse. 
Further developments should serve to eliminate the "absurdity of relativity"-- 
the collapse to a point (of which Einstein himself never became convinced). 
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1. INTRODUCTION 

The precision of the verification of Einstein's general theory of relativ- 
ity has been steadily improving since its creation. In our solar system 
and--more qualitatively--in and even beyond our galaxy, the theory 
accounts best for the observed phenomena. The universal geometrical 
structure of the theory has convinced many physicists that its predictions 
ought to apply also to extreme conditions very remote from our experience. 
The creator of the theory himself had, however, already pointed out 
repeatedly in which respects he expected limitations to its validity and a 
necessity for its completion. 

Einstein considered the right-hand member of his field equations as 
alien to the theory. He worked the rest of his life attempting the inclusion 
of the matter tensor into the geometrical structure. 

A remarkable, today rarely cited paper (Einstein and Rosen, 1935) 
bears witness of his doubts. The paper suggests, from the example of the 
uniformly accelerated frame, modifications of the theory in which a ge- 
ometrized source corresponding to elementary particle matter appears at 
the Schwarzschild radius of the spherically symmetric solution. The domain 
inside the horizon is eliminated in favor of a second sheet of the space 
outside. 

The mathematical analysis of the solutions of the Einstein-Hilbert 
equations shows, however, that the gravitational collapse of macroscopic 
matter sufficiently close to the horizon should occur inevitably within a 
finite time period, as measured by a comoving observer. As soon as 
gravitating matter has passed the horizon its complete further collapse to a 
point is a mathematical consequence of the equations (Oppenheimer et al., 
1939). 

During the same decade Schr6dinger investigated solutions of 
Maxwell's and Dirac's equations in the metric of an expanding universe. 
He discovered in this connection the "alarming phenomenon" of the 
transition of the solution of an electron of negative energy into a state of 
positive energy, which he interpreted as pair creation caused by the 
gravitational field (Schrrdinger, 1939, 1940). 2 A sophisticated aspect of 
quantum physics has thereby formally appeared in the classical theory. 

A quantum field-theoretic treatment of gravitation was probably first 
suggested by Rosenfeld (1930) and it implied of course already the pair 
creation in gravitational fields. The success of quantum electrodynamics 

2Remarkably, Schr6dinger did interpret the analog of the effect for photons only as a 
reflection on the metric, not as pair creation. The pair creation of photons was stressed by the 
author (Halpern, 1962). 
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inspired many authors to continue the development started by Rosenfeld. 
De Witt (1952) approached the subject in a fully covariant form, whereas 
Feynman (1971; and numerous previous and subsequent presentations 
since 1952) Gupta (1952), Thirring (1961), Tonnelat, and others began to 
develop a spin-two theory in flat space which started out from the linear 
Fierz-Pauli equation and a special form of Einstein's equations found by 
Papapetrou (1954)in which the nonlinear term is identified with the 
symmetrized energy-momentum tensor of the gravitational field which acts 
as its own source to the linear Fierz-Pauli term. The gauge invariance of 
the linearized theory was conjectured to become in all orders the covariance 
of Einstein's theory (Kraichnan, 1955; Gupta, 1959; Halpern 1963a,b; 
Deser, 1970). 

The author later remarked (Halpern, 1963a,b) that the complementar- 
ity of geometry and physics in the description of nature, discovered already 
by B. Riemann in the last century, made the manifestly covariant approach 
largely equivalent to the perturbative flat space approach from linear field 
theory to all orders. Both approaches lead in higher orders to unresolved 
divergence problems. In finite order these can be renormalized by introduc- 
tion of counter terms into the Lagrangian of the gravitational field which 
are nonlinear in the curvature (Utiyama, 1962; De Witt and Utiyama, 
1962) 

= x//g (R  + aR 2 + bRiklm Riklm) (1) 

Yet, even if the renormalization problem is solved completely, the 
magnitude of the nonlinear admixture remains in the dark because it 
depends on contributions from all possible elementary particle fields, 
including the self-interacting gravitational field. 

All the vacuum solutions of the Einstein-Hilbert equations are also 
solutions of the modified equations resulting from the Lagrangian of 
equation (1); other physical solutions of the latter are not known. 

Schr6dinger, whose assistant I was during his last years, was well 
aware of the prediction of gravitational collapse by general relativity (he 
first used the comparison with Xeno's paradox of Achilles and the turtle). 
His great experience in the development of physics and also his "alarming 
phenomenon" made him, however, doubt the validity of the theory in all 
its limits (Halpern, 1987). His views largely agreed with those of Einstein. 
The author was influenced by these views to search for a different way out 
and thus began to examine the modifications of the classical gravitational 
field equations by virtual elementary particle processes in their effects on 
the test case of a spherically symmetric mass distribution (Halpern, 1967, 
1971). Many physicists believed that a collapse through the horizon, 
although predicted by the Einstein-Hilbert equations, would practically 
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never occur because the initial conditions which guarantee it to happen are 
too restrictive as to be of practical importance. 

The author's view is, however, that even if this could occur with a set 
of measure zero of all the possible initial conditions a problem for the 
theory exists that asks for a new outlook. The difficulties of finding 
approximate alternative solutions of the modified equations proved, how- 
ever, forbidding. 

Some time after the author's work, Sakharov (1967) suggested an 
approach to obtain similar modified equations. Both the earlier attempt of 
the present author and the independent one by Sakharov are related to an 
idea of O. Klein, according to which the Lagrangian of general relativity is 
to be obtained from the quantum fluctuations of spinor elementary particle 
fields; also a work by Weyl (1929) foreshadows such ideas. 

The concentration on the virtual quantum effects of the gravitational 
interaction with pairs happened because the real pair formation, known to 
everyone who somewhat understood the subject since the works of Rosen- 
feld and Schr6dinger, appeared trivial and less important) 

The author treated it earlier as one of the simplest elementary particle 
processes, mainly to demonstrate how and to what degree elementary 
particle processes can at all be caused by the gravitational field in spite of 
the principal of equivalence (Halpern, 1962). Common knowledge included 
of course that the total Schwarzschild metric cannot be stat ic--but the 
author, influenced by Schr6dinger's insistence, considered the domain 
beyond the horizon as unphysical--else one might even argue that already 
Schr6dinger's early work foresaw the Hawking radiation, because also the 
de Sitter universe, discussed extensively by Schr6dinger, has a horizon 
(Schr6dinger, 1957). It appeared already clear that collapsing matter 
interacting only gravitationally should in general give rise to some pair 
creation, the likelihood of the process increasing, the closer this matter 
comes to the formation of a horizon. This should happen in analogy to the 
situation in nongravitational elementary particle physics, roughly, because 
the collapsing matter can transmit gravitationally momentum to virtual 
pairs and supply the lacking balance to make it real. The formation of a 
horizon is not necessary for this process. 

However one looks at the situation, one will have to agree that in 
order to take account of the average effects due to elementary particle pairs 
in the large, one needs a modification of the classical gravitational field 
equations. The Einstein-Hilbert equations do not forbid pair creation, but 

3When Iwanenko at the GR2 meeting in 1962 in Poland urged Feynman to give a written 
acknowledgment of such a process, calculated by his pupil Vladimirov, Feynman wrote 
jokingly that he agreed that the reaction may occur once in the universe. 
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they can certainly not derive or predict it even in average. The argument 
that the Einstein-Hilbert equations are the correct equations everywhere 
and need only the insertion of the effect of elementary particle pairs by 
hand may prove physically as wrong as the well-known historical error that 
the equations of classical mechanics are the correct ones in all domains and 
need only insertion by hand of statistical thermal fluctuations. 

We thus adopt here the view that: 

1. Schr6dinger's discovery of pair creation by metric fields leads 
directly to the requirement of modifications of the macroscopic 
gravitational field equations which should only in extreme or very 
special situations lead to significantly different physical results than 
the Einstein-Hilbert equations. 

2. These equations have derivatives of higher order than the second 
and the interaction of matter with the gravitational field is not 
restricted to be minimal; it includes the curvature to take account of 
averaged contributions by virtual or real particle pairs. 

We would like to stress here once more a point raised before: We do 
not claim that real pair creation necessarily plays tacitly a significant role 
in the physics of the universe--but it is not predicted by the Einstein- 
Hilbert equations; the existence of the process, however small, allows the 
conclusion (for which we have otherwise not enough evidence) that also the 
effect of virtual pairs is not included. We know from quantum electrody- 
namics about the great significance of these virtual particle effects for the 
law of motion. We can expect that these are more significant on longer 
distances in the case of the universal gravitational interaction which deals 
also with virtual pairs of massless particles. 

We have of course good reasons to trust general relativity for the 
conditions in our solar system and indications that it still applies well for 
neutron stars, The history of physics demonstrates that laws well estab- 
lished in a certain domain had to be modified in different domains and one 
should not neglect indications however faint for it. This can be well 
understood because the mathematical description is based on axioms which 
introduce idealizations with which a measurable physical object is iden- 
tifiable only to an approximation which is bound to fail in more extreme 
situations. This was expressed in the author's presentation at the Wroclaw 
symposium (Halpern, 1993) as: "Every good and therefore clear theory can 
be expected to reveal ultimately so great an absurdity that no reasonable 
person can believe in it. ''4 Indeed this proved to be the case not only for 

4A poster with the same content was presented on July 3, 1992, at the GR13 meeting in 
Cordoba. 
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Newtonian mechanics, but also with Maxwellian electromagnetic theory, 
Rutherford's atom, and classical statistical mechanics. The assumption that 
it will not apply finally also to the theory of relativity is not convincing to 
the author. The author adopted tentatively the point of view that the 
prediction of the collapse of a large cloud of dust to a point irrespective of 
the interaction of the dust particles has the character of such an absurdity. 
Its elimination promises to reveal Valuable new aspects. 5 

The search for modifications of the gravitational field equations which 
avoid the absurdity and take account of the discussed elementary predic- 
tions of quantum field theory (at least in average for classical fields) does 
not need to be restricted to terms derived from equation (1). These were 
obtained from an early approach to quantum theory in gravitational fields. 
The assumptions about the gravitational law in the quantum domain is 
indeed based on speculations derived from the macroscopic law and the 
quantum laws of elementary particle fields. Even the macroscopic quan- 
tum effect, which can be expected in analogy to the Casimir effect of 
the electromagnetic interaction, remains remote from any observation 
(Halpern, 1987). SchrSdinger realized that we have no evidence for quan- 
tum effects including gravitation and suggested in his lectures the search for 
an extended gravitational law that would give rise at small distances to 
mesonic forces (Halpern, 1987). 

The search for a gauge theory of gravitation also appears promising. 
The first attempt was probably made by Utiyama (1956). A somewhat 
different approach was then suggested by Kibble (1960). The formulation 
in terms of principal fiber bundles was given by Cho (1975, 1976). 

The cited authors strive and claim to obtain the Einstein-Hilbert 
equations as gravitational field equations. This results from the arbitrari- 
ness in the choice of a Lagrangian and the variation after the gauge field is 
determinedl The present author in his earlier gauge field approach, follow- 
ing Klein's suggestion, used the group of spin transformations (locally 
isomorphic to the Lorentz group) to obtain an admixture of a nonlinear 
Lagrangian equation (1). After the Lagrangian was obtained, the variation 
was performed with respect to the metric or the tetrad. This results in an 
admixture of terms with fourth-order derivatives to the field equations 
(Halpern, 1987). Yang (1974) considered a gauge theory of gravitation 
with the general linear group GL(4, r) as gauge group. He presented 
metrical field equations of the form 

Riy;k - -  Rki; j  = 0 (2a) 

sit must be remarked here that the 3~ background radiation lends support to the assumption 
that the universe evolved from a very limited domain; the conclusion about the contraction 
of a cloud of dust to a point seems, however, too far-fetched. 
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and stated that the second-order metric equations, especially the Einstein- 
Hilbert equations, were incorrectly derived from a gauge theory. 

Equation (2a) admits obviously all vacuum solutions of the Einstein 
equations, but it was soon recognized that it admits besides this also other 
solutions of unphysical character (PaveU, 1975). 

The present author transformed Yang's equations with the Bianchi 
identities into the form 

Rhijk;h = 0 (2b) 

This form shows that they are just the Riemannian analog of Maxwell's 
equations, if one expresses them in terms of the curvature two-form. 

The author, however cannot agree that a gauge principle with GL(4, r) 
or its subgroups would result in the Riemannian curvature alone--except 
for very special solutions. The curvature turns out to be in general 
non-Riemannian with nonvanishing torsion. What should exclude the 
torsion in Yang's approach? 

The author observed later that the principal fiber bundle P(G, H, 
G/H, n) of a Lie group G with a Lie subgroup H and the coset space 
G/H with the natural projection rt: G ~G/H forms a gauge theory on the 
base space B = G/H, which for the manifold of certain semisimple groups 
allows one even to formulate a realistic Kaluza-Klein type-metric theory 
[as a simple case: G = S0(3, 2) and H = S0(3, 1), the anti-de Sitter group 
and the proper Lorentz group with the anti-de Sitter universe as base G/H]. 

The natural Cartan-Killing metric is namely for every semisimple 
group Gr a solution of the Einstein-Hilbert equations in r dimensions with 
cosmological member. Restricting other solutions such that the Killing 
vectors corresponding to the left invariant vectors of H and their commuta- 
tion relations are preserved, one arrives at a Kaluza-Klein theory with a 
metric on the base manifold which is the projection of the solution on the 
bundle space P. The gauge group S0(3, 1) is a subgroup of GL(4, r), so 
that the gauge field is related to that of GL(4, r ) - - the  curvature is, 
however, even in this case non-Riemannian. Torsion is usually present. A 
fundamental difference from the approach by Yang, is however, use of a 
pseudo-orthogonal subgroup of GL(4, r) so that the theory is metric (it 
determines a covariant derivative which, applied to the metric, vanishes). 
The connection can in such a case be separated into a Riemannian part and 
a contortion part. 

The (homogeneous) Einstein-Hilbert equations projected on the base 
have thus in general a purely metric term, a term formed only out of the 
torsion tensor and its covariant derivatives, and a mixed term formed of 
both the Riemannian curvature as well as the torsion. The author restricted 
in most of the publications on this theory attention to the special solutions 
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for which torsion vanishes; this was somewhat under the influence of a view 
of Dirac. 6 

A brief discussion with Dr. A. Lasenby, who expressed a general 
opposing view after my Wroclaw lecture, encouraged me to reconsider the 
torsion problem. 

The structure of the modified equations of the author's gauge theory 
appears already interesting enough in the special case of vanishing torsion. 
They can be obtained by writing down the equations of the Kaluza-Klein 
gauge theory for a general curvature two-form and choosing then the 
special cases of a purely Riemannian curvature (Halpern, 1993). The results 
are one set of equations consisting only of the Yang term, (2a), and a 
second set consisting of the Einstein-Hilbert term and a term bilinear in 
the curvature, which may be called the energy-momentum tensor of the 
gauge field. The latter expressions will become of the correct physical 
dimension if multiplied by a constant with the dimension of length 
squared--the square of the Planck length--to yield the expected magni- 
tude of the effect. 

The theory does not answer the question of the origin of this magni- 
tude. The other unit of length, which is defined by the theory, is that of the 
radius of the de Sitter universe. Empirically the dimensionless ratio of these 
two length is of the order of 1065 (about Dirac's large number to the power 
3/2) (Dirac, 1937); the second length determines the cosmological member 
of the field equations [dimension (length)-2]. 

One may introduce by hand a right-hand member as source to these 
torsion-free field equations. The second set obviously will have the energy- 
momentum tensor of matter as source. The Yang term may have a source 
that is related to elementary particle spin. Such a source in general will be 
averaged out of macroscopic matter at higher temperature. In the latter 
case the energy-momentum tensor of matter will be covariantly conserved; 
in general the conservation law requires, however, an additional term 
which is due to the interaction of the curvature tensor with the spin source 
of the Yang term--the gravitational analog of a nonminimal Pauli interac- 
tion term. 

The theory restricted to these special solutions is indeed a peculiar 
Kaluza-Klein type theory in which the analog of the electromagnetic field 
is the Riemannian curvature two-form of the metric and the "charge" is 
related to the elementary particle spin. The typical fiber of the bundle is in 
this simplest version of the theory the proper Lorentz group S0(3, 1). It 

6When asked about  his view on torsion in gravitational theory, Dirac replied that  he 
considered it and came to the conclusion that it is so peculiar a geometrical feature " that  it 
probably will have no place in physical theory." 
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may be identified (or associated) with the bundle of orthonormal frames. 
Elementary particles with a spin are described by a wave function which is 
a functional realization (and not a matrix representation) of the group; this 
is, however, in most cases equivalent to a matrix representation with a 
wave function of space-time. Half-integer spin can remarkably also be 
described by such functional realizations with the parameters of the group 
manifold as variables (Bopp and Haag, 1959). A more sophisticated form 
of the theory deals with the universal covering group of S0(3, 2) as G and 
its six-dimensional subgroup as H. Remarkable topological features relate 
it to particle quantization and spin statistics. We are restricting ourselves 
here to G = SO(3, 2). We assume the homogeneous Einstein equations in 
ten dimensions as the field equations of our (6 + 4)-dimensional gauge 
theory on the manifold of S0(3, 2). 

The curvature two-form (gauge field) is in general not Riemannian, but 
in our case of an orthogonal subgroup of the general linear group as gauge 
group one can decompose it into a Riemannian curvature two-form and a 
term with torsion (contortion). One can split the total field equations such 
that the purely Riemannian terms are on the left-hand side and the mixed 
and pure torsion terms on the right-hand side. The horizontal component 
of the field equations consist of the Einstein-Hilbert term plus a term bilinear 
in the Riemann tensor (additional energy-momentum density of the gravi- 
tational field). The mixed horizontal-vertical term is the Yang term and the 
purely vertical term is eliminated with a Lagrange multiplier guaranteeing 
on the fibers the original group metric. The right-hand side of the field 
equations containing torsion is interpreted as the matter tensor comprising 
a nonminimal interaction term of matter with the Riemannian curvature. 

The geometrical features of the theory are discussed in Section 2. The 
resulting geometry of space-time turns out to be related to the Einstein- 
Cartan manifold, used extensively for newer developments of Cartan's 
original idea (Hehl et al., 1976). The structure of the equations and their 
physical interpretation are however, very different. Hehl's theory is dualis- 
tic. The arena of space-time exists independently of the "animals" pre- 
sented to the public by the physicists who strive to create the illusion of 
showing nature. The present theory is unitarian. The arena itself is alive 
and comprises about everything in the universe--except for the initial 
conditions. The gauge theory is that of the geometry and even its field 
equations are inherent in the structure of the latter. 

2, THE MATHEMATICAL STRUCTURE OF THE THEORY 

The field equations of our theory are derived from a gauge principle 
which is inherent in the structure of the principal fiber bundle: 

P(G, 1t, G/H, n) (3) 
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with G a semisimple Lie group and H its semisimple Lie subgroup, which 
is isomorphic to the typical fiber. The space of left cosets G/H forms the 
base manifold and x is the natural projection: G ~ G/H. 

We choose here for G the anti-de Sitter group S0(3,  2) and for H the 
proper Lorentz group S0(3,  1). [A choice of the universal covering group 
of S0(3,  2) for G and the corresponding subgroup H leads to interesting 
topological features which pertain to elementary particle quantization and 
spin-statistics and are discussed in other publications.] We can choose left 
invariant vectors A~ which are at every point of the manifold of G 
orthonormal with respect to the natural Cartan-Killing metric T: 

TRs tr(Ad'(AR)Ad'(As)) v v = = C R v C s u  = -~ - t~RS  (4) 

with C~v = [AR, Av] v the structure constants of G. 
We can in particular choose four of the orthonormal vectors A E 

( E =  1 . . . .  ,4) perpendicular to the fiber and the remaining six AM 
(M = 5 , . . . ,  10) on the fiber through each point. We shall henceforth 
always denote all components of tensors with respect to such a base by 
letters A . . . . .  L if they are perpendicular to the fiber and by letters 
M , . . . ,  Q if they are vertical (on the fiber); general components are 
denoted by letters R . . . . .  Z. We apply this rule even without further 
warning to the Einstein summation convention: A~B E thus sums over one 
to four, AMB M sums over five to ten, and ARB R over one to ten. We adopt 
the same rules for the coordinates of local trivialization, for which, 
however, lower case indices are used. 

The natural metric ~ of a semisimple Lie group of r dimensions always 
fulfills Einstein's equations with a cosmological member: 

1 r - 2  
- + = o ( 5 )  

The metric ~, can be projected by ~ on the base manifold G/H and 
yields there a metric g = ~'~. The base manifold becomes thus a homoge- 
neous space of constant curvature, which in our case is 4-dimensional and 
has the topology and metric of the anti-de Sitter universe. The metric g 
then fulfills Einstein's equations with a different cosmological member: 
Denoting the Ricci tensor and the curvature invariant of g by B~ and B, we 
obtain 

1 1 
Bik --~ gik B + ~ gik = 0 ( S a )  

The cosmological member in our units has the value A = 1/2 and the 
radius of the anti-de Sitter universe p = (6) v2. 
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We shall consider other solutions ? of equation (5) besides that which 
results in the metric of the de Sitter universe. Such solutions will have 
larger local curvature. For example, due to gravitational waves, these give 
rise to other lengths besides p. More complicated solutions give rise to 
torsion on the base manifold. We shall relate torsion to matter and we shall 
need then another fundamental length to relate the intensity of torsion with 
the curvature. We know empirically that this must be the Planck length 
(hG/c3) 1/2, which in units with h = c = 1 is the square root of Newton's G. 
We choose here largely out of convenience the anti-de Sitter universe with 
its radius p unrelated to x//-G - -  namely to obtain the principal fiber bundle 
P on a group manifold. Theories with G a variable scalar field which 
determines p by second-order field equations were already conceived by 
Einstein and later worked out (on the basis of Dirac's large numbers 
hypothesis) by Jordan (1959), Thiry (1948), and Brans and Dicke (1961). 
We can obtain related features by choosing G = S0(4,  2) and H = S0(4,  1) 
with a five-dimensional base manifold which allows us to construct a 
Kaluza-Klein-Jordan theory for electromagnetic fields. 

The most general admissible solution of equation (5) is a metric 
which still has six orthonormal Killing vector fields AM which lie on the 
fiber through every point of the manifold of G and have the commutation 
relations of the Lie subalgebra of H. There exist also four orthonorrnal 
vector fields Ae which are everywhere perpendicular to the AM with respect 
to the metric y and these also commute with the Killing vectors AM as 
prescribed by G: 

[AM, AN] = C~NAe ,  [Ae, AM] = cee~Ar (6a) 

Only the commutation relations between the Ae are generalized: 

[Ae, Ae] = C~ ~eFA R (6b) 

where in general cgaze are functions of the points of the base and not equal 
to the CReF. The fiber bundle structure is still the same and it determines a 
more general metric g = 7r'V on the base manifold. The topology of the 
manifolds is unchanged. A connection on P is given by choosing the 
horizontal vector spaces perpendicular with respect to ~, to the vertical 
vector spaces spanned by the AM at every point of G. The horizontal vector 
space is thus spanned by the Az. The corresponding one-forms are denoted 
by A e, A g. 

A local trivialization defines coordinates xr: x e, x m, on G such that the 
first four x e label the points on an open set of the base and can thus also 
be used as coordinates for this base domain. We shall henceforth make use 
of this without further mention. An orthonormal base of horizontal vectors 
Ar at any point of G projects on vectors n'Ae = ez, which are orthonor- 



412 Halpern 

mal with respect to g on the base. The projection of the frames of the 
vector fields A e  for all points of the fiber over a base point results in the 
bundle of orthonormal frames of S 0 ( 3 ,  1) on the base point and vice versa. 
This frame bundle can thus be identified with the fiber over base points, 
which is frequently done in the mathematical literature for subgroups of 
the general linear group. We shall also make use of it to obtain torsion and 
curvature on the base. The Lie algebra-valued connection one-form is 

o9 = A M~ M (7) 

where ~M are elements of the Lie algebra corresponding to AM. Using 
instead of the abstract S 0 ( 3 ,  1) its bundle of orthonormal frames, we can 
substitute 

o9 = A Mc EM/~ (Va) 

with the matrix representation of the generators 3u equal to the structure 
constants c Eun  as determined by the frame mapped from the base on that 
surface of each fiber H where the origin of the group coordinates x m is 
chosen. The curvature two-form becomes 

1 
f l  = Do9 = do9 + [09, 09] = do9 + ~ ce~lv A ~ ^ A ~ gt e (Vb) 

or, for horizontal frame vectors, 

f l ( A e ,  A n )  = cgMnEt~M (7C) 

The connection o9 is linear and the soldering form 0 (~4-valued one 
form) in a local trivialization has the components 

On(p) =An(p)  ( p e P ,  H =  1 . . . . .  4) (8) 

This is so because the vectors n ' A u  on the base actually do form the frame 
bundle corresponding to every point p of G. 

The torsion two-form becomes 

| = DO = dO + [o9, 0] (8a) 

or for horizontal frame vectors 

O(Alr , AF)  = (~HFE (H + 1 . . . . .  4) (8b) 

To the above horizontal forms on P there correspond uniquely tensors 
on the base. Let us consider these forms at the point p CP to which there 
corresponds a frame of the bundle of orthonormal frames given by the base 
vectors: ej  = n ' A j ( p ) .  The components of the tensors on the base in this 
orthonormal frame are 5 / for the soldering form 0, THIj = c~l'ldl the torsion 
tensor, and Haez j  = cgestcAp e the curvature tensor. 
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The Lie algebra-valued connection one-form co is vertical. The pull- 
back of any local section s on P defines a gauge potential A = s*~o and the 
pullback of the curvature two-form a gauge field: F = s*~. This gauge field 
is related in the given frame to the curvature tensor H just given before. 

The gauge potential depends on the local section, which may again be 
canonically associated to a local trivialization qg. The gauge transformation 
of the potential is thus related to a base-point-dependent transformation of 
the vertical coordinates x"* by the action of a group element g(x): 

X m = fpm(g(x'e), x 'm),  X b = X "b (9) 

and the transformation of the coordinate components A m ~ of the one-form 
AM, ~M, resulting from it. It can be expressed in terms of the gauge 
potential alone with the help of the Maurer-Car tan  form | on the fiber 

M A (in coordinates: Am aM) as 

A "(x e) = Ad(g -l(x~))A + g*OMc (10) 

The last inhomogeneous term contains in fact the vertical coordi- 
nate components of A MaM as they appear in the coordinate transfor- 
mation: AMm~Xm/~X "e. The picture of a (local) transformation of the 
vertical coordinates caused by a base-point-dependent group element g(xe): 
X m = ~m(X'n, g(xe)) resulting in a transformation of 

AM~tM=A'~M-~TaM= A; M +A~m--~-i-xi JaM 

OX tmX~ ̂  
= A~M(x ") + A ~ ( x  ') - ~ ) a g  

tM tn ~xtm 
= A d ( g - 1 ) A ~ M  (X)~M + Am (x  )--~xi aM ( 1 0 a )  

which is used in the Kaluza-Klein  form of the theory, is more transparent 
for a reader accustomed to the relativistic formalism. Also here the value of 
~o at two different surfaces (determined by xm= 0 and x 'm= 0) enter into 
the description. 

The bundle of orthonormal frames results in a metric connection for 
which the covariant derivative of the metric tensor vanishes (this is not the 
case for the general frame bundle). We are here able to decompose the 
linear connection a5 on the base into the Riemann connection of the metric 
g and the contortion tensor K formed out of the torsion tensor T: 

1 , 
K~, = ~ (T~., + TI, j '+  Tjk j) (11) 
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To show this, one expresses the torsion two-form in our orthonormal frame 
as a commutator and decomposes it formally as the commutator of the 
orthonormal frame projected on the base plus components of the connec- 
tion ~: 

[Ae, AF] H = [ee, e e ] n +  CnMeAMA~ - r Act 

= [ee, ev] z + FnvE -- FneF = Thee (12) 

The Riemann connection in an orthonormal frame is expressible in 
terms of commutators. One finds thus 

Fn~e= EF - Knr~ (12a) 

with the components of the Riemann connection of the metric g denoted by 

and Frier the complete connection on the base which can be split into 
Riemann connection and contortion. Such a separation is not possible with 
the full general linear group as gauge group. 

The expression of T as a commutator implies, due to the Jacobi 
relations, 

T'rAj = K ~  = 0 (13) 

Several authors, notably C. N. Yang, derived field equations with a 
curvature tensor from the full linear group GL(4, r), equation (2a). They 
assume that their curvature is Riemann, but we conclude that it is a general 
curvature, which does not even allow a separation into metric and torsion 
terms as it occurs above equation (12a). 

The Riemannian curvature tensor on G, expressed in terms of the 
Riemann connection and its derivatives in an orthonormal frame AR, has 
the components 

x X X X Z 

~VUJ- " W ) , z u J  (14), 

The Riemann brackets in such a frame can be expressed in terms of the 
commutators of the frame vectors AR: 

S T  = 2 [cg sr  + ~ RV(~sv~ vvr + ~rv~ Zsr)] (14a) 
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Each of the commutators cg~sr is in our geometry either a structure 
constant of G or a component of the curvature or torsion two-forms, 

Vertical derivatives of  each of these commutators vanish because of 
the commutation relations (6a), (6b) and the Jacobi relations; their invari- 
ant derivatives, are therefore in this frame equal to ordinary derivatives. 
They become on the base covariant derivatives with the connection F, 
equation (12a). The whole expression is a tensor on G and therefore 
covafiant with respect to rotations of  the frame, and also the expression on 
the base which results from a projection must be covariant with respect to 
the eorresponding rotations of  the projected frame and therefore a tensorial 
expression. 

The purely vertical components of R are expressible by the structure 
constants of the subgroup H alone: 

o I o Q 
R M^w = ~ C MeC Ne (14b) 

ReM~V = 0 (14e) 

The other components are 

1 

R M  _ , , M  ( . ~ M  1 (14e) 

a 1 

1 r e  A _ m Ks x ts)7 YpN + ~ (  risK KI c g e - K  A + f l e a  T K . nx  (14t") 

1 

c a c~e --  K A K A - -  e e  I :  ~-  e ~ z  - -  e ~ s  + K a H z K n ~ J  

- -  K I H s K H E  I - T I t I l K A e H  (14g)  

In (140 and (14g) the torsion and contortion tensors T and K have 
replaced the commutators to save space. Considering the relation 

r z.,rva = --  3 f feAecUe~cge1~cXon = 3 H H K a e H X n z  ., (15)  

following from (6a), (6b), the components of R are expressed in terms of  
the curvature and torsion tensors on the base. The fact that the horizontal 
derivatives (denoted by a bar) of  the commutators become eovariant 
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derivatives with the connection of equation (12a) on the base has already 
been discussed. 

The tensor H a wiJ can be decomposed into the Riemann tensor on the 
base and a tensor formed solely out of the contortion tensor and its 
derivative with the Riemann connection of the metric g (denoted here by a 
semicolon): 

HAEIJ "~- BaEIj + QAEIJ 
(16) 

QAelJ  = KAEI;J --  Kaej;I + K A H I K H E j  --  KaHjKnE1 

The Riemannian curvature tensor on G can thus be expressed on the 
base into the Riemannian curvature tensors and their first covariant 
derivatives on the base with the projected metric g, plus expressions formed 
out of the contortion tensor and its first covariant derivative. All these 
covariant derivatives are with the Riemann connection formed out of g. 
The expressions are at most linear in the first covariant derivative of the 
Riemann tensor, bilinear in the Riemann tensor, bilinear in the first 
covariant derivative of the contortion tensor, and quadrilinear in this 
tensor. 

We can infer from Jacobi's relations applied to 

CJP E (r PIJ = --  H JEIJ = --  ( B EI "at- Q JEIJ ) 

that 

and 

HJEIJ = HSIeg (16a) 

= a % J  

3. THE FIELD EQUATIONS 

The field equations of our theory are the homogeneous Einstein equa- 
tions in ten dimensions with a cosmological member. The solutions are 
subject to the restrictions imposed by the vertical Killing vectors. These 
restrictions will, as we shall see, largely eliminate the independent character 
of the vertical components of the field equations. We showed in the last 
section that all the components of the curvature tensor on P are expressible 
by tensorial terms which depend only on the points of the base. We obtain 

1 1 
RMN = -~ YM~ -- -~ (~ MIJ~ NIJ (17a) 

1 s 1 
R M I  = ~ (~ MI I J "[" -~ (~ MJK TI  JK (17b) 



Geometrical Structure of Gravitation and Matter Fields 417 

J P ] P J I  Rez = c eECg st + ~ cg seCgr 

- Kse~j  + K J I K I t E j  -- TtIj1KJEt t 

leg1" qy JZ + KS K n R = I + ~  J I  P H I  IJ  

- T % K S .  + CJt,IC~t'J 

The field equations 

1 
G v v  = R v v - ~  y v v R  + yvv  = 0  

(17c) 

(17d) 

are 

lc~ zj ( 1 1 )  
GMN = ~ M Cg~v,s + Y~,N g -- ~ R (18a) 

GMz = R~ti (18b) (1) 
GEl = REI + ~F.I 1 -- ~ R (18c) 

These equations can be derived from the variational principle with the 
Lagrangian ~ = x/~(R + 1). Adding a term with Lagrangian multipliers 
y m n  

L~, = Y~'~(Tm,, - 7,,,,,) 

where 7m,, are the expressions of the vertical components of the metric 
tensor expressed in the vertical coordinates of the corresponding fiber 
points of the group manifold, this results in the vanishing of GuN. The 
purely vertical components of the field equations do not contribute. The 
metric on the fibers remains, f, as required. A generalization of this 
Lagrangian multiplier method is not used for the present purpose. 

The expression of the curvature on G in terms of tensorial expressions 
on the base has formally already been performed in the last section. The 
use of this formalism for the field equations requires, however, consider- 
ation of the fact that the projection on the base manifold imposes on the 
horizontal line elements the unit of a length which is different from the 
cosmological unit. The present theory, as mentioned before, offers no 
explanation for the relative values of the two units of length. The result of 
their large ratio is that the torsion tensor (which describes the energy 
density of matter) in general assumes values much larger than the curvature 
related to it. We are, however, able formal ly  to separate curvature from 
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torsion in this theory and can use the Riemannian geometry for parallel 
transfer. 

Expressed in terms of the curvature tensor H on the base, the 
horizontal components of the field equations in an orthonormal frame 
{ej = ~'Aj} become 

3 
H J E I J  - -  ~ G H ABoE H ABDz - -  KJEII I j  -t- K J H I K H E j  - -  THjIKJEH 

( 3 GH HAnOJ + • rcs a z n  ) - -  2 ])El 1 - -  "~ ABDJ H J A A j  v ,'- n .'~ a s  + T H A j K J A H  = 0 

(19) 

where the terms quadratic in H must have the gravitational constant G 
(square of the Planck length) as factor. The double bar denotes the 
covariant derivative with respect to the complete connection F on the base 
(with the contortion term). 

The decomposition (16) of the tensor H in B and Q results in 
cancellation of torsion terms, so that the horizontal component of the field 
equations is 

3 1 ( 3GH H A B o j + I ) = O  (19a) BE,, -- ~ GHABDEHABDI -- ~ ~EI B -- -~ ABDJ 

Notice that the large value of the cosmological member shows that we are 
still using the cosmological unit of length in which G is extremely small 
(about 10-125). 

The horizontal equations contain the Einstein term with cosmological 
member and a term bilinear in the curvature tensor H with the gravita- 
tional constant G as a factor. The decomposition of H into B and Q allows 
one to separate in the bilinear term a pure torsion term without Rieman- 
nian curvature, a purely Riemannian term of vanishing trace, and a mixed 
term which is linear in B and Q. Compared with general relativity, the 
purely Riemannian term shows an additional energy-momentum term of 
the gravitational field. 

This term is covariantly conserved only if the mixed horizontal-verti- 
cal equations have no torsion term (no source of the purely Riemannian 
part). This nonconservation of the purely gravitational tensor can be 
compared with the appearance of the Lorentz force in electrodynamics--as 
indeed in our gauge theory of geometry the mixed component can be called 
a gravitational analog of the Maxwell term with a source that may be 
interpreted as due to a Pauli-type interaction of the Riemannian tensor 
with matter spin. Apart from the pure torsion term with minimal coupling 
to the metric, which may be substituted for the matter tensor, we find also 
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a mixed B-Q part-interaction of metric curvature with torsion which 
results again from the Pauli term--an "interaction part" of the energy- 
momentum tensor. Notice that the trace of each of the mentioned terms 
contained in the expression bilinear in H vanishes separately. Then 

h B = - 2, B j;h = 0 (20) 

must thus be fulfilled for any solution in cosmological units. The remaining 
"right-hand side" to the Einstein term is of course also covariantly con- 
served and fulfills a conservation law together with an additional pseudo- 
tensor of the metric field. The purely metric term of the right-hand side is, 
however, as mentioned, not covariantly conserved if torsion does not 
vanish. 

The mixed vertical-horizontal components of the field equations--the 
analog of the Maxwell or general Yang-Mills equations, are of the form 

1 j 1 K j 
GM., = RM,='~M, Id +'~C6'M JTIK =0 (21) 

The derivative of cg, denoted by the bar--the horizontal derivative-- 
becomes the invariant derivative of the Yang-Mills field on the base; the 
space-time components of this derivative are with the connection form o3 
containing torsion. They are, according to our theorem, based on the 
Jacobi identities, canceled by the remaining Yang-Mills rotation, so that 
only the ordinary derivative remains, even on the base. This expression is, 
however, in our case of the form 

D*Dco(Aj, AI, A j) (21a) 

which is well known, from the analog to Maxwell's equations, to be the 
metric (Riemannian) covariant divergence of a tensor density. The addi- 
tional term containing torsion in (21) is cancelled in the formation of the 
total vertical derivative. We remain thus with the mettle covariant diver- 
gence of the curvature form (without the contortion term in the covariant 
derivative). This form is still Lie algebra valued. We can write the equiva- 
lent tensor expression on the base. It becomes 

A J H r e ; J = 0  (21b) 

again with the metric covariant derivative of the metric g. The purely 
metric part of the expression (21b) is 

B a J (21c) BI  ;J 

which we can recognize as the expression equivalent to the term suggested 
by Yang (1974) as the field equation of a gauge theory of gravitation. 
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We have alredy pointed out that it can be regarded as the Riemannian 
analog of Maxwell's equations--but in a gauge theory of GL(4, r) it lacks 
the torsion part, which in the present theory is the term 

Q AnIJ;j (21d) 

which we interpret as the matter source of this equation. It forms in our 
theory an ingredient of the geometry of space-time and not a source of it, 
as in previous theories (Hehl et al., 1976). Our invariance group indicates 
that orbits with vertical components on G are related to (inner) angular 
momentum, which suggests that the term (21c) is related to the spin tensor. 
It is equal to the term formed out of the metric g and must thus in general 
be small even if the torsion tensor itself is very large compared to the 
Riemannian curvature. 

To check the correctness of our tensor formulation on the base, we 
consider the conservation law of the Einstein tensor in ten dimensions: 

GR S;s = 0 (22) 

the term GNS;s gives no significant contribution. The term GER;R becomes 
after elimination of all terms which vanish in our geometry 

G HelH -- G MIC~ MIE -- G HIKIEH = 0 (22a) 

Written as tensorial expressions on the base, the first term is the covariant 
divergence of the tensor on the base corresponding to  GHE. The third term 
cancels, however, the contortion part of this divergence, so that only the 
metric part remains. The second term vanishes because of the mixed 
component of the field equations. It is, however, instructive to separate the 
whole expression of (22a) into a complete torsion-free curvature part and 
a part containing torsion terms (part of them interacting with curvature). 

The torsion-free part, unlike its purely Einsteinian term, is only then 
covariantly conserved if torsion vanishes. It is, as we know already from 
(19a), of the form 

( 1H 3 "4B~ 3G6HeBAnmBABDI~ (22b) 

This divergence, due to the mixed field equations, vanishes only if the latter 
have no torsion part. If this is not true, only the divergence of the total 
expression is zero, 

-(BH E _ 21 1~ HE B - ~3 GHABDEHABDH ---21~E1 H +_~3 G~HEHABDIHABD, )/;H = 0  

(22c) 
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H contains the tensor Q, which occurs thus either bilinear or multiplied 
with the curvature tensor B as a nonminimal interaction term between 
metric and torsion. 

4. CONCLUSIONS 

We have contemplated evidence for the validity of the gravitational 
field equations in the very small and the very large. We concluded that we 
are lacking experimental evidence in the small, the description of the 
gravitational field as a self-interacting spin-two field being only based on 
extrapolative speculation. The description in the very large and for ex- 
tremely strong gravitational fields we consider as inadequate because the 
classical equations are only compatible with the Schrrdinger effect of 
elementary particle pair creation, but cannot by themselves describe it. The 
indication is thus very strong that also the much more significant virtual 
pair effects are not taken into account in the Einstein-Hilbert equations 
for extreme situations. We contemplate as candidates for a more adequate 
description in the large the equations of the author's gauge theory. The 
geometrical structure of this theory is particularly clear and simple because 
it is constructed on the group manifold of a semisimple group (SO(3, 2)) 
with its subgroup (SO(3, 1)) the proper Lorentz group as gauge group. The 
fiber bundle aspect as well as the Kaluza-Klein aspect of the theory are 
inherent in its structure--even the Einstein equations in ten dimensions 
result from the group geometry. 

The physical interpretation of the geometrical structure is unusual. A 
connection is defined by assuming a horizontal vector space perpendicular 
to the vertical vectors. The Lie algebra-valued curvature two-form of this 
connection is interpreted as the gauge field; like every true Yang-Mills 
gauge field it is of spin one. The fact that our gauge group is an orthogonal 
subgroup of GL(4, r) allows us, however, to separate this gauge field into 
a purely Riemannian part and a part formed out of the torsion two-form 
and its first derivatives. The former part is directly related to the metric 
gravitational field, which is assumed to have spin two. The latter part, 
which can in general not be assumed to vanish, has no analog in any 
existing theory and we tentatively relate it to the presence of nongravita- 
tional sources. The homogeneous Einstein equations on the total group 
manifold can thus be separated into a purely gravitational "left-hand 
member" and a "right-hand member" with torsion, assumed to be com- 
posed out of the nongravitational matter source and interaction terms of 
matter and gravitation which involve both the Riemannian curvature 
two-form and the torsion two-form. A constant of the dimension of a 
length (Planck length) is required for the correct dimension of the different 
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terms on the base of the bundle (space-time). The purely vertical compo- 
nent of the equations is eliminated by Lagrange multipliers which achieve 
that the metric on the fibers remains for every admissible solution the same 
Cartan-Killing metric of the group manifold. 

The purely horizontal component of the equation consists of the 
Einstein-Hilbert term of the metric on the base plus a term bilinear in the 
gauge field. The latter can again be decomposed into a term bilinear in the 
Riemann tensor--an additional energy-momentum tensor of the metric 
field--and a bilinear energy-momentum source term consisting of pure 
torsion terms and mixed interaction terms between torsion and the 
Riemannian curvature. All these bilinear terms have the square of the 
Planck length as factor. 

The mixed vertical-horizontal part of the field equations are the 
equations of the gauge field. These can again be decomposed into a purely 
gravitational term which is equivalent to the expression suggested by 
Yang--and has therefore third derivatives of the metric--and a source 
term formed out of the torsion tensor and its first and second derivatives. 
If this source term does not vanish, the purely Riemannian part of the 
horizontal equations alone is not covariantly conserved. 

It must be stressed that the bilinear energy-momentum source of the 
gauge field in the horizontal component of the total equations is of 
vanishing trace--as expected for a Yang-Mills field. If our conjecture is 
right that the torsion part represents a matter source, then we can conclude 
that the energy-momentum tensor of this matter has vanishing trace in this 
simple version of the theory. It is thus to be expected that it consists largely 
of matter with vanishing rest mass which can most effectively be produced 
by gravitational fields. An average matter source can even in this case 
hardly be expected to be of vanishing trace; to obtain a more realistic 
matter tensor one will in any case have to consider more sophisticated 
higher-dimensional versions of such a theory. 

The points on the fiber are related to orthonormal frames and thus to 
angular position and systems of reference. The inner degrees of freedom are 
therefore related to (inner) angular momentum as an analog of charge in 
the original Kaluza-Klein theory. The possibility to convert spin into the 
dynamical variable of angular momentum is, besides the fact that the gauge 
field comprises the metric, a most peculiar feature of the present theory. A 
spinning test particle interacts dearly with the Riemannian curvature, yet it 
does not in general follow a geodesic of the metric ~ on G (Halpern, 1992). 
The problem of spin motion will be treated from the present point of view 
in a broader context. 

The vacuum solutions of general relativity are in general not torsion- 
free solutions of the present theory, but they are good approximations for 
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the conditions of our solar system because the expression bilinear in the 
curvature tensor is there very small. An exception is the Schwarzschild- 
Weyl-Trefftz solution, which because of its spherical symmetry, like the 
anti-de Sitter metric, is an exact solution. Solutions of collapsing matter 
will of course behave very differently from the predictions of general 
relativity. 

Although the present context does not yet yield a general realistic 
description of matter, the structure now exists to fulfill Einstein's require- 
ment to geometrize the right-hand member of his field equations; this has 
in principle here been achieved, at the price of relaxing Einstein's other 
requirement of minimal coupling of the metric to matter. The latter 
requirement has, however, in any case to be relaxed to describe the 
Schr6dinger effect and virtual pair effects realistically. Somehow, like for 
example, the principle of the conservation of mass, the requirement in 
question has to be generalized to meet the demands of modern physics--in 
spite of its usefulness (and even necessity) for the evolution of physics in 
the past. The relaxation of the requirement entails, however, modified field 
equations with higher than second derivatives of the metric. The structure 
of the present equations with the inclusion of the third-order Yang term 
may become a more lasting feature of gravitational theory. If one believes 
that quantization is closely related to gauge principles, the present gauge 
theory with a spin-one Yang-MiUs field and its master equation, contain- 
ing gravitation and matter, opens up a new outlook to the long-stagnating 
attempts to quantize the gravitational field separately from matter. 

There is little doubt that in future developments of the present 
approach a more general non-Riemannian geometry than the restricted 
present one will have to be used. The present theory can be termed a gauge 
theory of the restricted non-Riemannian geometry. 
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